Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Arthritis Care Res (Hoboken) ; 2022 Mar 21.
Article in English | MEDLINE | ID: covidwho-2275830

ABSTRACT

OBJECTIVE: COVID-19 patients with rheumatic disease have a higher risk of mechanical ventilation than the general population. The present study was undertaken to assess lung involvement using a validated deep learning algorithm that extracts a quantitative measure of radiographic lung disease severity. METHODS: We performed a comparative cohort study of rheumatic disease patients with COVID-19 and ≥1 chest radiograph within ±2 weeks of COVID-19 diagnosis and matched comparators. We used unadjusted and adjusted (for age, Charlson comorbidity index, and interstitial lung disease) quantile regression to compare the maximum pulmonary x-ray severity (PXS) score at the 10th to 90th percentiles between groups. We evaluated the association of severe PXS score (>9) with mechanical ventilation and death using Cox regression. RESULTS: We identified 70 patients with rheumatic disease and 463 general population comparators. Maximum PXS scores were similar in the rheumatic disease patients and comparators at the 10th to 60th percentiles but significantly higher among rheumatic disease patients at the 70th to 90th percentiles (90th percentile score of 10.2 versus 9.2; adjusted P = 0.03). Rheumatic disease patients were more likely to have a PXS score of >9 (20% versus 11%; P = 0.02), indicating severe pulmonary disease. Rheumatic disease patients with PXS scores >9 versus ≤9 had higher risk of mechanical ventilation (hazard ratio [HR] 24.1 [95% confidence interval (95% CI) 6.7, 86.9]) and death (HR 8.2 [95% CI 0.7, 90.4]). CONCLUSION: Rheumatic disease patients with COVID-19 had more severe radiographic lung involvement than comparators. Higher PXS scores were associated with mechanical ventilation and will be important for future studies leveraging big data to assess COVID-19 outcomes in rheumatic disease patients.

2.
J Clin Med ; 12(4)2023 Feb 04.
Article in English | MEDLINE | ID: covidwho-2225419

ABSTRACT

(1) The use of high-flow nasal cannula (HFNC) combined with frequent respiratory monitoring in patients with acute hypoxic respiratory failure due to COVID-19 has been shown to reduce intubation and mechanical ventilation. (2) This prospective, single-center, observational study included consecutive adult patients with COVID-19 pneumonia treated with a high-flow nasal cannula. Hemodynamic parameters, respiratory rate, inspiratory fraction of oxygen (FiO2), saturation of oxygen (SpO2), and the ratio of oxygen saturation to respiratory rate (ROX) were recorded prior to treatment initiation and every 2 h for 24 h. A 6-month follow-up questionnaire was also conducted. (3) Over the study period, 153 of 187 patients were eligible for HFNC. Of these patients, 80% required intubation and 37% of the intubated patients died in hospital. Male sex (OR = 4.65; 95% CI [1.28; 20.6], p = 0.03) and higher BMI (OR = 2.63; 95% CI [1.14; 6.76], p = 0.03) were associated with an increased risk for new limitations at 6-months after hospital discharge. (4) 20% of patients who received HFNC did not require intubation and were discharged alive from the hospital. Male sex and higher BMI were associated with poor long-term functional outcomes.

3.
BJR Open ; 4(1): 20210062, 2022.
Article in English | MEDLINE | ID: covidwho-2029763

ABSTRACT

Objective: To predict short-term outcomes in hospitalized COVID-19 patients using a model incorporating clinical variables with automated convolutional neural network (CNN) chest radiograph analysis. Methods: A retrospective single center study was performed on patients consecutively admitted with COVID-19 between March 14 and April 21 2020. Demographic, clinical and laboratory data were collected, and automated CNN scoring of the admission chest radiograph was performed. The two outcomes of disease progression were intubation or death within 7 days and death within 14 days following admission. Multiple imputation was performed for missing predictor variables and, for each imputed data set, a penalized logistic regression model was constructed to identify predictors and their functional relationship to each outcome. Cross-validated area under the characteristic (AUC) curves were estimated to quantify the discriminative ability of each model. Results: 801 patients (median age 59; interquartile range 46-73 years, 469 men) were evaluated. 36 patients were deceased and 207 were intubated at 7 days and 65 were deceased at 14 days. Cross-validated AUC values for predictive models were 0.82 (95% CI, 0.79-0.86) for death or intubation within 7 days and 0.82 (0.78-0.87) for death within 14 days. Automated CNN chest radiograph score was an important variable in predicting both outcomes. Conclusion: Automated CNN chest radiograph analysis, in combination with clinical variables, predicts short-term intubation and death in patients hospitalized for COVID-19 infection. Chest radiograph scoring of more severe disease was associated with a greater probability of adverse short-term outcome. Advances in knowledge: Model-based predictions of intubation and death in COVID-19 can be performed with high discriminative performance using admission clinical data and convolutional neural network-based scoring of chest radiograph severity.

4.
Medicine (Baltimore) ; 101(29): e29587, 2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-1961224

ABSTRACT

To tune and test the generalizability of a deep learning-based model for assessment of COVID-19 lung disease severity on chest radiographs (CXRs) from different patient populations. A published convolutional Siamese neural network-based model previously trained on hospitalized patients with COVID-19 was tuned using 250 outpatient CXRs. This model produces a quantitative measure of COVID-19 lung disease severity (pulmonary x-ray severity (PXS) score). The model was evaluated on CXRs from 4 test sets, including 3 from the United States (patients hospitalized at an academic medical center (N = 154), patients hospitalized at a community hospital (N = 113), and outpatients (N = 108)) and 1 from Brazil (patients at an academic medical center emergency department (N = 303)). Radiologists from both countries independently assigned reference standard CXR severity scores, which were correlated with the PXS scores as a measure of model performance (Pearson R). The Uniform Manifold Approximation and Projection (UMAP) technique was used to visualize the neural network results. Tuning the deep learning model with outpatient data showed high model performance in 2 United States hospitalized patient datasets (R = 0.88 and R = 0.90, compared to baseline R = 0.86). Model performance was similar, though slightly lower, when tested on the United States outpatient and Brazil emergency department datasets (R = 0.86 and R = 0.85, respectively). UMAP showed that the model learned disease severity information that generalized across test sets. A deep learning model that extracts a COVID-19 severity score on CXRs showed generalizable performance across multiple populations from 2 continents, including outpatients and hospitalized patients.


Subject(s)
COVID-19 , Deep Learning , COVID-19/diagnostic imaging , Humans , Lung , Radiography, Thoracic/methods , Radiologists
5.
J Am Coll Radiol ; 19(7): 891-900, 2022 07.
Article in English | MEDLINE | ID: covidwho-1778238

ABSTRACT

PURPOSE: Deploying external artificial intelligence (AI) models locally can be logistically challenging. We aimed to use the ACR AI-LAB software platform for local testing of a chest radiograph (CXR) algorithm for COVID-19 lung disease severity assessment. METHODS: An externally developed deep learning model for COVID-19 radiographic lung disease severity assessment was loaded into the AI-LAB platform at an independent academic medical center, which was separate from the institution in which the model was trained. The data set consisted of CXR images from 141 patients with reverse transcription-polymerase chain reaction-confirmed COVID-19, which were routed to AI-LAB for model inference. The model calculated a Pulmonary X-ray Severity (PXS) score for each image. This score was correlated with the average of a radiologist-based assessment of severity, the modified Radiographic Assessment of Lung Edema score, independently interpreted by three radiologists. The associations between the PXS score and patient admission and intubation or death were assessed. RESULTS: The PXS score deployed in AI-LAB correlated with the radiologist-determined modified Radiographic Assessment of Lung Edema score (r = 0.80). PXS score was significantly higher in patients who were admitted (4.0 versus 1.3, P < .001) or intubated or died within 3 days (5.5 versus 3.3, P = .001). CONCLUSIONS: AI-LAB was successfully used to test an external COVID-19 CXR AI algorithm on local data with relative ease, showing generalizability of the PXS score model. For AI models to scale and be clinically useful, software tools that facilitate the local testing process, like the freely available AI-LAB, will be important to cross the AI implementation gap in health care systems.


Subject(s)
COVID-19 , Deep Learning , Artificial Intelligence , COVID-19/diagnostic imaging , Edema , Humans , Tomography, X-Ray Computed/methods
6.
AJR Am J Roentgenol ; 219(1): 15-23, 2022 07.
Article in English | MEDLINE | ID: covidwho-1456223

ABSTRACT

Hundreds of imaging-based artificial intelligence (AI) models have been developed in response to the COVID-19 pandemic. AI systems that incorporate imaging have shown promise in primary detection, severity grading, and prognostication of outcomes in COVID-19, and have enabled integration of imaging with a broad range of additional clinical and epidemiologic data. However, systematic reviews of AI models applied to COVID-19 medical imaging have highlighted problems in the field, including methodologic issues and problems in real-world deployment. Clinical use of such models should be informed by both the promise and potential pitfalls of implementation. How does a practicing radiologist make sense of this complex topic, and what factors should be considered in the implementation of AI tools for imaging of COVID-19? This critical review aims to help the radiologist understand the nuances that impact the clinical deployment of AI for imaging of COVID-19. We review imaging use cases for AI models in COVID-19 (e.g., diagnosis, severity assessment, and prognostication) and explore considerations for AI model development and testing, deployment infrastructure, clinical user interfaces, quality control, and institutional review board and regulatory approvals, with a practical focus on what a radiologist should consider when implementing an AI tool for COVID-19.


Subject(s)
COVID-19 , Radiology , Artificial Intelligence , Humans , Pandemics , Radiography
7.
Am J Emerg Med ; 49: 52-57, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1244700

ABSTRACT

PURPOSE: During the COVID-19 pandemic, emergency department (ED) volumes have fluctuated. We hypothesized that natural language processing (NLP) models could quantify changes in detection of acute abdominal pathology (acute appendicitis (AA), acute diverticulitis (AD), or bowel obstruction (BO)) on CT reports. METHODS: This retrospective study included 22,182 radiology reports from CT abdomen/pelvis studies performed at an urban ED between January 1, 2018 to August 14, 2020. Using a subset of 2448 manually annotated reports, we trained random forest NLP models to classify the presence of AA, AD, and BO in report impressions. Performance was assessed using 5-fold cross validation. The NLP classifiers were then applied to all reports. RESULTS: The NLP classifiers for AA, AD, and BO demonstrated cross-validation classification accuracies between 0.97 and 0.99 and F1-scores between 0.86 and 0.91. When applied to all CT reports, the estimated numbers of AA, AD, and BO cases decreased 43-57% in April 2020 (first regional peak of COVID-19 cases) compared to 2018-2019. However, the number of abdominal pathologies detected rebounded in May-July 2020, with increases above historical averages for AD. The proportions of CT studies with these pathologies did not significantly increase during the pandemic period. CONCLUSION: Dramatic decreases in numbers of acute abdominal pathologies detected by ED CT studies were observed early on during the COVID-19 pandemic, though these numbers rapidly rebounded. The proportions of CT cases with these pathologies did not increase, which suggests patients deferred care during the first pandemic peak. NLP can help automatically track findings in ED radiology reporting.


Subject(s)
Appendicitis/diagnostic imaging , Diverticulitis/diagnostic imaging , Emergency Service, Hospital , Intestinal Obstruction/diagnostic imaging , Tomography, X-Ray Computed/statistics & numerical data , Abdomen/diagnostic imaging , COVID-19/epidemiology , Humans , Massachusetts/epidemiology , Natural Language Processing , Retrospective Studies , SARS-CoV-2 , Utilization Review
8.
Radiol Cardiothorac Imaging ; 2(3): e200277, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-1243730

ABSTRACT

PURPOSE: To investigate pulmonary vascular abnormalities at CT pulmonary angiography (CT-PE) in patients with coronavirus disease 2019 (COVID-19) pneumonia. MATERIALS AND METHODS: In this retrospective study, 48 patients with reverse-transcription polymerase chain reaction-confirmed COVID-19 infection who had undergone CT-PE between March 23 and April 6, 2020, in a large urban health care system were included. Patient demographics and clinical data were collected through the electronic medical record system. Twenty-five patients underwent dual-energy CT (DECT) as part of the standard CT-PE protocol at a subset of the hospitals. Two thoracic radiologists independently assessed all studies. Disagreement in assessment was resolved by consensus discussion with a third thoracic radiologist. RESULTS: Of the 48 patients, 45 patients required admission, with 18 admitted to the intensive care unit, and 13 requiring intubation. Seven patients (15%) were found to have pulmonary emboli. Dilated vessels were seen in 41 cases (85%), with 38 (78%) and 27 (55%) cases demonstrating vessel enlargement within and outside of lung opacities, respectively. Dilated distal vessels extending to the pleura and fissures were seen in 40 cases (82%) and 30 cases (61%), respectively. At DECT, mosaic perfusion pattern was observed in 24 cases (96%), regional hyperemia overlapping with areas of pulmonary opacities or immediately surrounding the opacities were seen in 13 cases (52%), opacities associated with corresponding oligemia were seen in 24 cases (96%), and hyperemic halo was seen in 9 cases (36%). CONCLUSION: Pulmonary vascular abnormalities such as vessel enlargement and regional mosaic perfusion patterns are common in COVID-19 pneumonia. Perfusion abnormalities are also frequently observed at DECT in COVID-19 pneumonia and may suggest an underlying vascular process.Supplemental material is available for this article.© RSNA, 2020.

9.
Front Neurol ; 12: 642912, 2021.
Article in English | MEDLINE | ID: covidwho-1202073

ABSTRACT

Objectives: Patients with comorbidities are at increased risk for poor outcomes in COVID-19, yet data on patients with prior neurological disease remains limited. Our objective was to determine the odds of critical illness and duration of mechanical ventilation in patients with prior cerebrovascular disease and COVID-19. Methods: A observational study of 1,128 consecutive adult patients admitted to an academic center in Boston, Massachusetts, and diagnosed with laboratory-confirmed COVID-19. We tested the association between prior cerebrovascular disease and critical illness, defined as mechanical ventilation (MV) or death by day 28, using logistic regression with inverse probability weighting of the propensity score. Among intubated patients, we estimated the cumulative incidence of successful extubation without death over 45 days using competing risk analysis. Results: Of the 1,128 adults with COVID-19, 350 (36%) were critically ill by day 28. The median age of patients was 59 years (SD: 18 years) and 640 (57%) were men. As of June 2nd, 2020, 127 (11%) patients had died. A total of 177 patients (16%) had a prior cerebrovascular disease. Prior cerebrovascular disease was significantly associated with critical illness (OR = 1.54, 95% CI = 1.14-2.07), lower rate of successful extubation (cause-specific HR = 0.57, 95% CI = 0.33-0.98), and increased duration of intubation (restricted mean time difference = 4.02 days, 95% CI = 0.34-10.92) compared to patients without cerebrovascular disease. Interpretation: Prior cerebrovascular disease adversely affects COVID-19 outcomes in hospitalized patients. Further study is required to determine if this subpopulation requires closer monitoring for disease progression during COVID-19.

10.
J Intensive Care Med ; 36(8): 900-909, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1158184

ABSTRACT

BACKGROUND: Right ventricular (RV) dysfunction is common and associated with worse outcomes in patients with coronavirus disease 2019 (COVID-19). In non-COVID-19 acute respiratory distress syndrome, RV dysfunction develops due to pulmonary hypoxic vasoconstriction, inflammation, and alveolar overdistension or atelectasis. Although similar pathogenic mechanisms may induce RV dysfunction in COVID-19, other COVID-19-specific pathology, such as pulmonary endothelialitis, thrombosis, or myocarditis, may also affect RV function. We quantified RV dysfunction by echocardiographic strain analysis and investigated its correlation with disease severity, ventilatory parameters, biomarkers, and imaging findings in critically ill COVID-19 patients. METHODS: We determined RV free wall longitudinal strain (FWLS) in 32 patients receiving mechanical ventilation for COVID-19-associated respiratory failure. Demographics, comorbid conditions, ventilatory parameters, medications, and laboratory findings were extracted from the medical record. Chest imaging was assessed to determine the severity of lung disease and the presence of pulmonary embolism. RESULTS: Abnormal FWLS was present in 66% of mechanically ventilated COVID-19 patients and was associated with higher lung compliance (39.6 vs 29.4 mL/cmH2O, P = 0.016), lower airway plateau pressures (21 vs 24 cmH2O, P = 0.043), lower tidal volume ventilation (5.74 vs 6.17 cc/kg, P = 0.031), and reduced left ventricular function. FWLS correlated negatively with age (r = -0.414, P = 0.018) and with serum troponin (r = 0.402, P = 0.034). Patients with abnormal RV strain did not exhibit decreased oxygenation or increased disease severity based on inflammatory markers, vasopressor requirements, or chest imaging findings. CONCLUSIONS: RV dysfunction is common among critically ill COVID-19 patients and is not related to abnormal lung mechanics or ventilatory pressures. Instead, patients with abnormal FWLS had more favorable lung compliance. RV dysfunction may be secondary to diffuse intravascular micro- and macro-thrombosis or direct myocardial damage. TRIAL REGISTRATION: National Institutes of Health #NCT04306393. Registered 10 March 2020, https://clinicaltrials.gov/ct2/show/NCT04306393.


Subject(s)
COVID-19/complications , Respiratory Insufficiency/virology , Ventricular Dysfunction, Right/virology , Adult , Aged , Critical Illness , Female , Heart Ventricles , Humans , Male , Middle Aged , Randomized Controlled Trials as Topic , Respiration, Artificial , Severity of Illness Index , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Function, Right
11.
Radiol Cardiothorac Imaging ; 2(5): e200276, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1155994

ABSTRACT

BACKGROUND: RSNA expert consensus guidelines provide a framework for reporting CT findings related to COVID-19, but have had limited multireader validation. PURPOSE: To assess the performance of the RSNA guidelines and quantify interobserver variability in application of the guidelines in patients undergoing chest CT for suspected COVID-19 pneumonia. MATERIALS AND METHODS: A retrospective search from 1/15/20 to 3/30/20 identified 89 consecutive CT scans whose radiological report mentioned COVID-19. One positive or two negative RT-PCR tests for COVID-19 were considered the gold standard for diagnosis. Each chest CT scan was evaluated using RSNA guidelines by 9 readers (6 fellowship trained thoracic radiologists and 3 radiology resident trainees). Clinical information was obtained from the electronic medical record. RESULTS: There was strong concordance of findings between radiology training levels with agreement ranging from 60 to 86% among attendings and trainees (kappa 0.43 to 0.86). Sensitivity and specificity of "typical" CT findings for COVID-19 per the RSNA guidelines were on average 86% (range 72%-94%) and 80.2% (range 75-93%), respectively. Combined "typical" and "indeterminate" findings had a sensitivity of 97.5% (range 94-100%) and specificity of 54.7% (range 37-62%). A total of 163 disagreements were seen out of 801 observations (79.6% total agreement). Uncertainty in classification primarily derived from difficulty in ascertaining peripheral distribution, multiple dominant disease processes, or minimal disease. CONCLUSION: The "typical appearance" category for COVID-19 CT reporting has an average sensitivity of 86% and specificity rate of 80%. There is reasonable interreader agreement and good reproducibility across various levels of experience.

12.
J Infect Dis ; 223(1): 38-46, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1066343

ABSTRACT

BACKGROUND: We sought to develop an automatable score to predict hospitalization, critical illness, or death for patients at risk for coronavirus disease 2019 (COVID-19) presenting for urgent care. METHODS: We developed the COVID-19 Acuity Score (CoVA) based on a single-center study of adult outpatients seen in respiratory illness clinics or the emergency department. Data were extracted from the Partners Enterprise Data Warehouse, and split into development (n = 9381, 7 March-2 May) and prospective (n = 2205, 3-14 May) cohorts. Outcomes were hospitalization, critical illness (intensive care unit or ventilation), or death within 7 days. Calibration was assessed using the expected-to-observed event ratio (E/O). Discrimination was assessed by area under the receiver operating curve (AUC). RESULTS: In the prospective cohort, 26.1%, 6.3%, and 0.5% of patients experienced hospitalization, critical illness, or death, respectively. CoVA showed excellent performance in prospective validation for hospitalization (expected-to-observed ratio [E/O]: 1.01; AUC: 0.76), for critical illness (E/O: 1.03; AUC: 0.79), and for death (E/O: 1.63; AUC: 0.93). Among 30 predictors, the top 5 were age, diastolic blood pressure, blood oxygen saturation, COVID-19 testing status, and respiratory rate. CONCLUSIONS: CoVA is a prospectively validated automatable score for the outpatient setting to predict adverse events related to COVID-19 infection.


Subject(s)
COVID-19/diagnosis , Severity of Illness Index , Adult , Aged , Critical Illness , Female , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , Models, Theoretical , Outpatients , Predictive Value of Tests , Prognosis , Prospective Studies , ROC Curve , Sensitivity and Specificity
13.
Acad Radiol ; 28(4): 572-576, 2021 04.
Article in English | MEDLINE | ID: covidwho-1032325

ABSTRACT

RATIONALE AND OBJECTIVES: Radiographic findings of COVID-19 pneumonia can be used for patient risk stratification; however, radiologist reporting of disease severity is inconsistent on chest radiographs (CXRs). We aimed to see if an artificial intelligence (AI) system could help improve radiologist interrater agreement. MATERIALS AND METHODS: We performed a retrospective multi-radiologist user study to evaluate the impact of an AI system, the PXS score model, on the grading of categorical COVID-19 lung disease severity on 154 chest radiographs into four ordinal grades (normal/minimal, mild, moderate, and severe). Four radiologists (two thoracic and two emergency radiologists) independently interpreted 154 CXRs from 154 unique patients with COVID-19 hospitalized at a large academic center, before and after using the AI system (median washout time interval was 16 days). Three different thoracic radiologists assessed the same 154 CXRs using an updated version of the AI system trained on more imaging data. Radiologist interrater agreement was evaluated using Cohen and Fleiss kappa where appropriate. The lung disease severity categories were associated with clinical outcomes using a previously published outcomes dataset using Fisher's exact test and Chi-square test for trend. RESULTS: Use of the AI system improved radiologist interrater agreement (Fleiss κ = 0.40 to 0.66, before and after use of the system). The Fleiss κ for three radiologists using the updated AI system was 0.74. Severity categories were significantly associated with subsequent intubation or death within 3 days. CONCLUSION: An AI system used at the time of CXR study interpretation can improve the interrater agreement of radiologists.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , Lung , Radiography, Thoracic , Radiologists , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
14.
Radiology ; 297(3): E303-E312, 2020 12.
Article in English | MEDLINE | ID: covidwho-967323

ABSTRACT

Background Disease severity on chest radiographs has been associated with higher risk of disease progression and adverse outcomes from coronavirus disease 2019 (COVID-19). Few studies have evaluated COVID-19-related racial and/or ethnic disparities in radiology. Purpose To evaluate whether non-White minority patients hospitalized with confirmed COVID-19 infection presented with increased severity on admission chest radiographs compared with White or non-Hispanic patients. Materials and Methods This single-institution retrospective cohort study was approved by the institutional review board. Patients hospitalized with confirmed COVID-19 infection between March 17, 2020, and April 10, 2020, were identified by using the electronic medical record (n = 326; mean age, 59 years ±17 [standard deviation]; male-to-female ratio: 188:138). The primary outcome was the severity of lung disease on admission chest radiographs, measured by using the modified Radiographic Assessment of Lung Edema (mRALE) score. The secondary outcome was a composite adverse clinical outcome of intubation, intensive care unit admission, or death. The primary exposure was the racial and/or ethnic category: White or non-Hispanic versus non-White (ie, Hispanic, Black, Asian, or other). Multivariable linear regression analyses were performed to evaluate the association between mRALE scores and race and/or ethnicity. Results Non-White patients had significantly higher mRALE scores (median score, 6.1; 95% confidence interval [CI]: 5.4, 6.7) compared with White or non-Hispanic patients (median score, 4.2; 95% CI: 3.6, 4.9) (unadjusted average difference, 1.8; 95% CI: 0.9, 2.8; P < .01). For both White (adjusted hazard ratio, 1.3; 95% CI: 1.2, 1.4; P < .001) and non-White (adjusted hazard ratio, 1.2; 95% CI: 1.1, 1.3; P < .001) patients, increasing mRALE scores were associated with a higher likelihood of experiencing composite adverse outcome with no evidence of interaction (P = .16). Multivariable linear regression analyses demonstrated that non-White patients presented with higher mRALE scores at admission chest radiography compared with White or non-Hispanic patients (adjusted average difference, 1.6; 95% CI: 0.5, 2.7; P < .01). Adjustment for hypothesized mediators revealed that the association between race and/or ethnicity and mRALE scores was mediated by limited English proficiency (P < .01). Conclusion Non-White patients hospitalized with coronavirus disease 2019 infection were more likely to have a higher severity of disease on admission chest radiographs than White or non-Hispanic patients, and increased severity was associated with worse outcomes for all patients. © RSNA, 2020 Online supplemental material is available for this article.


Subject(s)
Coronavirus Infections/diagnostic imaging , Coronavirus Infections/epidemiology , Ethnicity/statistics & numerical data , Lung/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/epidemiology , Racial Groups/statistics & numerical data , Radiography, Thoracic/methods , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Cohort Studies , Female , Humans , Male , Middle Aged , Pandemics , Radiography , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Young Adult
15.
medRxiv ; 2020 Sep 18.
Article in English | MEDLINE | ID: covidwho-808139

ABSTRACT

PURPOSE: To improve and test the generalizability of a deep learning-based model for assessment of COVID-19 lung disease severity on chest radiographs (CXRs) from different patient populations. MATERIALS AND METHODS: A published convolutional Siamese neural network-based model previously trained on hospitalized patients with COVID-19 was tuned using 250 outpatient CXRs. This model produces a quantitative measure of COVID-19 lung disease severity (pulmonary x-ray severity (PXS) score). The model was evaluated on CXRs from four test sets, including 3 from the United States (patients hospitalized at an academic medical center (N=154), patients hospitalized at a community hospital (N=113), and outpatients (N=108)) and 1 from Brazil (patients at an academic medical center emergency department (N=303)). Radiologists from both countries independently assigned reference standard CXR severity scores, which were correlated with the PXS scores as a measure of model performance (Pearson r). The Uniform Manifold Approximation and Projection (UMAP) technique was used to visualize the neural network results. RESULTS: Tuning the deep learning model with outpatient data improved model performance in two United States hospitalized patient datasets (r=0.88 and r=0.90, compared to baseline r=0.86). Model performance was similar, though slightly lower, when tested on the United States outpatient and Brazil emergency department datasets (r=0.86 and r=0.85, respectively). UMAP showed that the model learned disease severity information that generalized across test sets. CONCLUSIONS: Performance of a deep learning-based model that extracts a COVID-19 severity score on CXRs improved using training data from a different patient cohort (outpatient versus hospitalized) and generalized across multiple populations.

16.
Radiol Artif Intell ; 2(4): e200079, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-731126

ABSTRACT

PURPOSE: To develop an automated measure of COVID-19 pulmonary disease severity on chest radiographs (CXRs), for longitudinal disease tracking and outcome prediction. MATERIALS AND METHODS: A convolutional Siamese neural network-based algorithm was trained to output a measure of pulmonary disease severity on CXRs (pulmonary x-ray severity (PXS) score), using weakly-supervised pretraining on ∼160,000 anterior-posterior images from CheXpert and transfer learning on 314 frontal CXRs from COVID-19 patients. The algorithm was evaluated on internal and external test sets from different hospitals (154 and 113 CXRs respectively). PXS scores were correlated with radiographic severity scores independently assigned by two thoracic radiologists and one in-training radiologist (Pearson r). For 92 internal test set patients with follow-up CXRs, PXS score change was compared to radiologist assessments of change (Spearman ρ). The association between PXS score and subsequent intubation or death was assessed. Bootstrap 95% confidence intervals (CI) were calculated. RESULTS: PXS scores correlated with radiographic pulmonary disease severity scores assigned to CXRs in the internal and external test sets (r=0.86 (95%CI 0.80-0.90) and r=0.86 (95%CI 0.79-0.90) respectively). The direction of change in PXS score in follow-up CXRs agreed with radiologist assessment (ρ=0.74 (95%CI 0.63-0.81)). In patients not intubated on the admission CXR, the PXS score predicted subsequent intubation or death within three days of hospital admission (area under the receiver operating characteristic curve=0.80 (95%CI 0.75-0.85)). CONCLUSION: A Siamese neural network-based severity score automatically measures radiographic COVID-19 pulmonary disease severity, which can be used to track disease change and predict subsequent intubation or death.

17.
Emerg Radiol ; 27(6): 731-735, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-658317

ABSTRACT

PURPOSE: To evaluate the prevalence and features of lung apical findings on neck and cervical spine CTs performed in patients with COVID-19. METHODS: This was a retrospective, IRB-approved study performed at a large academic hospital in the USA. Between March 3, 2020, and May 6, 2020, 641 patients with COVID-19 infection diagnosed by RT-PCR received medical care at our institution. A small cohort of patients with COVID-19 infection underwent neck or cervical spine CT imaging for indications including stroke, trauma, and neck pain. The lung apices included in the field of view on these CT scans were reviewed for the presence of findings suspicious for COVID-19 pneumonia, including ground-glass opacities, consolidation, or crazy-paving pattern. The type and frequency of these findings were recorded and correlated with clinical information including age, gender, and symptoms. RESULTS: Thirty-four patients had neck or spine CTs performed before or concurrently with a chest CT. Of this group, 17 (50%) had unknown COVID-19 status at the time of neck or spine imaging and 10 (59%) of their CT studies had findings in the lung apices consistent with COVID-19 pneumonia. CONCLUSION: Lung apical findings on cervical spine or neck CTs consistent with COVID-19 infection are common and may be encountered on neuroimaging performed for non-respiratory indications. For these patients, the emergency radiologist may be the first physician to suspect underlying COVID-19 infection.


Subject(s)
Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Betacoronavirus , Boston , COVID-19 , Computed Tomography Angiography , Contrast Media , Female , Humans , Male , Middle Aged , Neck Injuries/diagnostic imaging , Neck Pain/diagnostic imaging , Pandemics , Retrospective Studies , SARS-CoV-2 , Spinal Diseases/diagnostic imaging , Stroke/diagnostic imaging
18.
J Thorac Imaging ; 35(6): 346-353, 2020 Nov 01.
Article in English | MEDLINE | ID: covidwho-607344

ABSTRACT

PURPOSE: The purpose of this article was to report the utility of computed tomography (CT) for detecting unsuspected cases of Coronavirus disease 2019 (COVID-19) and the utility of the Radiological Society of North America (RSNA)/Society of Thoracic Radiology (STR)/American College of Radiology (ACR) consensus guidelines for COVID-19 reporting. MATERIALS AND METHODS: A total of 22 patients of the 156 reverse transcriptase polymerase chain reaction confirmed COVID-19 patients who were hospitalized between March 27, 2020 and March 31, 2020 at our quaternary care academic medical center and who underwent CT imaging within 1 week of admission were included in this retrospective study. Demographics and clinical data were extracted from the electronic medical record system. Two thoracic radiologists independently categorized each CT study on the basis of RSNA/STR/ACR consensus guidelines. Disagreement in categorization was resolved by consensus discussion with a third thoracic radiologist. RESULTS: At the time of imaging, 16 patients (73%) were suspected of COVID-19, and 6 patients (27%) were not. Common symptoms at presentation were fever (73%), cough (77%), and gastrointestinal symptoms (59%). An overall 63% of suspected COVID-19 patients exhibited shortness of breath, whereas 0 unsuspected COVID-19 patients did (P=0.02). On the basis of the RSNA consensus guidelines, 68%, 18%, 9%, and 5% of studies were categorized as "typical appearance," "indeterminate appearance," "atypical appearance," and "negative for pneumonia," respectively. There was no difference of category distribution between suspected and unsuspected COVID-19 patients (P=0.20), with "typical appearance" being the most prevalent in both (69% vs. 67%, respectively). CONCLUSIONS: It is important to recognize imaging features of COVID-19 pneumonia even in unsuspected patients. Implementation of the RSNA/STR/ACR consensus guidelines may increase consistency of reporting and convey the level of suspicion for COVID-19 to other health care providers, with "typical appearance" especially warranting further attention.


Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Tomography, X-Ray Computed/methods , Adult , Humans , Middle Aged , North America , Radiologists , Retrospective Studies , SARS-CoV-2 , Societies, Medical
19.
Radiology ; 297(1): E207-E215, 2020 10.
Article in English | MEDLINE | ID: covidwho-243264

ABSTRACT

Background Angiotensin-converting enzyme 2, a target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), demonstrates its highest surface expression in the lung, small bowel, and vasculature, suggesting abdominal viscera may be susceptible to injury. Purpose To report abdominal imaging findings in patients with coronavirus disease 2019. Materials and Methods In this retrospective cross-sectional study, patients consecutively admitted to a single quaternary care center from March 27 to April 10, 2020, who tested positive for SARS-CoV-2 were included. Abdominal imaging studies performed in these patients were reviewed, and salient findings were recorded. Medical records were reviewed for clinical data. Univariable analysis and logistic regression were performed. Results A total of 412 patients (average age, 57 years; range, 18 to >90 years; 241 men, 171 women) were evaluated. A total of 224 abdominal imaging studies were performed (radiography, n = 137; US, n = 44; CT, n = 42; MRI, n = 1) in 134 patients (33%). Abdominal imaging was associated with age (odds ratio [OR], 1.03 per year of increase; P = .001) and intensive care unit (ICU) admission (OR, 17.3; P < .001). Bowel-wall abnormalities were seen on 31% of CT images (13 of 42) and were associated with ICU admission (OR, 15.5; P = .01). Bowel findings included pneumatosis or portal venous gas, seen on 20% of CT images obtained in patients in the ICU (four of 20). Surgical correlation (n = 4) revealed unusual yellow discoloration of the bowel (n = 3) and bowel infarction (n = 2). Pathologic findings revealed ischemic enteritis with patchy necrosis and fibrin thrombi in arterioles (n = 2). Right upper quadrant US examinations were mostly performed because of liver laboratory findings (87%, 32 of 37), and 54% (20 of 37) revealed a dilated sludge-filled gallbladder, suggestive of bile stasis. Patients with a cholecystostomy tube placed (n = 4) had negative bacterial cultures. Conclusion Bowel abnormalities and gallbladder bile stasis were common findings on abdominal images of patients with coronavirus disease 2019. Patients who underwent laparotomy often had ischemia, possibly due to small-vessel thrombosis. © RSNA, 2020.


Subject(s)
Abdomen/diagnostic imaging , Coronavirus Infections/diagnostic imaging , Gastrointestinal Diseases/diagnostic imaging , Gastrointestinal Diseases/virology , Pneumonia, Viral/diagnostic imaging , Abdomen/pathology , Abdomen/surgery , Abdomen/virology , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/pathology , Female , Gastrointestinal Diseases/pathology , Gastrointestinal Diseases/surgery , Humans , Laparotomy , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , Retrospective Studies , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL